Срок сдачи 30.01.22г.

Тема занятия: Логарифмы и их свойства. Натуральный и десятичный логарифмы.

Рассмотрим следующее уравнение $2^x = 32$. Легко найти корень методом подбора — это число 5, т.к. $2^5 = 32$.

А как Вам такое уравнение $2^x = 35$. Думаете, что это уравнение не имеет корней, ничего подобного! Корень есть и понятно, что это число больше 5, но меньше 6.

Обдумывая ситуацию с уравнением $2^x = 35$, математики ввели в рассмотрение новый символ \log_2 , который назвали **логарифмом** по основанию 2 и с помощью этого символа корень уравнения $2^x = 35$ можно записать так: $x = \log_2 35$ (читается: «логарифм числа 35 по основанию 2)

ВЫВОД: Любое уравнение вида $a^x = b$, где а и b — положительные числа, причем, число а не равно 1 имеет единственный корень:

 $x = log_a b$ (логарифм числа b по основанию а)

Числа а и b — положительные по определению степени, число $a \ddagger 1$, т. к. в противном случае уравнение $a^x = b$ может иметь бесконечное множество корней.

ОПРЕДЕЛЕНИЕ: Логарифмом положительного числа b по положительному и отличному от 1 основанию а называют показатель степени, в которую нужно возвести число а, чтобы получить число b.

$$log_ab=x$$
, $To a^x=b$

где х – показатель степени, а – основание.

Примеры:

$$\log_2 8 = 3$$
, так как $2^3 = 8$

$$\log_3(\sqrt[1]{_{27}}) = -3$$
, так как $3^{-3} = \frac{1}{27}$

$$\log_{1/2} 32 = -5$$
, так как $(\frac{1}{2})^{-5} = 2^5 = 32$

Особо выделим три формулы (попробуй обосновать их самостоятельно):

$$\log_a a = 1 \qquad \qquad \log_a 1 = 0 \qquad \qquad \log_a a^c = c$$

Например,

$$\log_2 2 = 1$$
, $\log_3 3^{67} = 67$, $\log_{123} 1 = 0$

Вставить пропущенные слова:

Логарифмом числа b по_____ а называется _____. степени, в которую нужно_____ основание а, чтобы получить число b.

$$E$$
сли $a^x=b$, где $a>0$ и $a\neq 1$, то $\log_a b=$

Основание и число, стоящее под знаком логарифма, должны быть_____

Вычислить:

1) $\log_3 27$ 2) $\log_9 81$ 3) $\log_5 25$ 4) $\log_5 125$ 5) $\log_5 \frac{1}{5}$ 6) $\log_5 \frac{1}{25}$ 7) $\log_4 64$ 8) $\log_{0,3} 1$ 9) $\log_2 64$ 10) $\log_4 4$ 11) $\log_3 \frac{1}{9}$ 12) $\log_{10} 100$

Операцию нахождения логарифма числа обычно называют *погарифмированием*. Эта операция является обратной по отношению к возведению в степень с соответствующим основанием.

Основное логарифмическое тождество:

$$a^{\log_a b} = b (b > 0, a > 0 и a \neq 1)$$

Так как $a^x = b$, $x = \log_a b$

Пример № 2: $2^{\log_2 5} = 5$,

$$5^{1+\log_5 3} = 5 * 5^{\log_5 3} = 15$$

Основные свойства логарифмов.

При работе с логарифмами применяются их следующие свойства.

При любом a > 0 $(a \ne 1)$ при любых положительных x и y выполнены равенства:

- 1. $\log_a 1 = 0$.
- 2. $\log_a a = 1$.
- $3. \quad \log_a xy = \log_a x + \log_a y.$
- $4. \quad \log_a \frac{x}{y} = \log_a x \log_a y.$
- **5.** $\log_a x^p = p * \log_a x$, для любого действительного р.

Основные свойства логарифмов широко применяются в ходе преобразования выражений, содержащих логарифмы.

6. Формула перехода к новому основанию:

$$\log_a x = \frac{\log_b x}{\log_b a}$$
 (x> 0, a > 0 u $a \neq 1$, b > 0 u $b \neq 1$

С помощью формулы перехода можно найти значение логарифма с произвольным основанием, имея таблицы логарифмов, составленных для какого-нибудь одного основания b. Наиболее употребительны таблицы десятичных и натуральных логарифмов.

Примеры:

1)
$$\log_2 32 + \log_2 2 = \log_2 32 \cdot 2 = \log_2 64 = 6$$

2)
$$\log_3 45 - \log_3 15 = \log_2 \frac{45}{15} = \log_3 3 = 1$$

3)
$$\log_{7} 28 - \log_{7} 4 = \log_{7} \frac{28}{4} = \log_{7} 7 = 1$$

- 4) $\log_5 5^3 = 3 \log_5 5 = 3.1 = 3$
- 5) $3\log_2 4 = \log_2 64 = 6$
- 6) $\log_3 3^{67} = 67$
- 7) $\log_5 5^{13} = 13$

1.Запишите основное логарифмическое тождество и свойства логарифмов.

2. Вычислите:

- 1) $2^{\log_2 3}$
- 2) 8^{log₈ 2}
- 3) $\log_3 27 \log_7 7$
- 4) $\log_4 16 + \log_5 5$
- $5) \log_6 36$

- 6) $2\log_6 3 + \log_6 4$
- $7) \log_3 81 \log_7 7$
- 8) $\log_2 50 \log_2 25$
- 9) $5^2 \cdot 5^{\log_5 3}$
- 10) $\log_2(\log_3 81)$

Десятичные и натуральные логарифмы.

В математике принято следующее сокращение:

 \log_{10} a= lg a - десятичный логарифм числа a (буква «о» пропускается, a основание 10 не ставят).

 log_e a= ln a - натуральный логарифм числа a. «е» - это такое иррациональное число, равное 2,7 (буква «о» пропускается, а основание «е» не ставят).

Рассмотрим примеры:

ln e=1; ln 1=0.

Формула 6 потребуется при вычислении логарифма по калькулятору.

Возьмем пример: $\log 3 \ 7 = \frac{\lg 7}{\lg 3}$. В калькуляторе можно вычислить только десятичный и натуральный логарифм.

Вставить пропущенные слова:

Формулу $a^{\log_a b} = b$, где $a \neq 1$, a > 0, b > 0 называют ...

Десятичный логарифм числа а _____

Натуральный логарифм числа а_____

Вычислить:

- *1)*
- lg 100 lg 1000 lg0,1 lg0,001 2)
- 3)
- 4)