Уважаемые студенты! Необходимо написать и выучить материал!!!

Лекция Алкены

Алкены — это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна двойная связь между атомами углерода C=C.

Гомологический ряд алкенов.

Название алкена	Формула алкена
Этилен (этен)	C_2H_4
Пропилен (пропен)	C_3H_6
Бутилен (бутен)	$\mathrm{C_4H_8}$
Пентен	C_5H_{10}
Гексен	C_6H_{12}
Гептен	C_7H_{14}
Октен	C_8H_{16}
Нонен	C_9H_{18}

Общая формула гомологического ряда алкенов $\mathbf{C}_n\mathbf{H}_{2n}$.

Первые четыре члена гомологического ряда алкенов — газы, начиная с C_5 — жидкости. Алкены легче воды, не растворимы в воде и не смешиваются с ней.

Строение алкенов

Рассмотрим особенности строения алкенов на примере этилена.

В молекуле этилена присутствуют химические связи С-Н и С=С.

Связь С–Н ковалентная слабополярная одинарная **σ-связь**. Связь С=С – двойная, ковалентная неполярная, одна из связей σ, **вторая π-связь**. Гибридизация атомов углерода при двойной связи в молекулах алкенов – **sp**². Гибридные орбитали атомов углерода при двойной связи в алкенах направлены в пространстве под углом **120**° друг к другу. Это соответствует плоско-треугольному строению молекулы.

Например, молекуле этилена C_2H_4 соответствует плоское строение.

Химические свойства алкенов

1. Реакции присоединения

Для алкенов характерны реакции присоединения по двойной связи С=С, при которых протекает разрыв пи-связи в молекуле алкена.

1.1. Гидрирование

Алкены реагируют с водородом при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt, Pd и др.).

Например, при гидрировании бутена-2 образуется бутан.

$$CH_3$$
— CH = CH — $CH_3 + H_2 \xrightarrow{Ni, t} CH_3$ — CH_2 — CH_2 — CH_3

1.2. Галогенирование алкенов

Например, при хлорировании этилена— 1,2-дихлорпропан.

При взаимодействии с алкенами красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на двойную связь.

1.3. Гидрогалогенирование алкенов

Алкены присоединяют галогеноводороды.

Например, при взаимодействии этилена с бромоводородом образуется бромэтан.

$$CH_2 = CH_2 + HBr \longrightarrow CH_3 - CH_2Br$$

При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкенам водород преимущественно присоединяется к **наиболее гидрогенизированному атому углерода** при двойной связи.

Например, при присоединении хлороводорода HCl к пропилену атом водорода преимущественно присоединяется к атому углерода группы CH2=, поэтому преимущественно образуется 2-хлорпропан.

$$CH_2$$
= CH - CH_3 + HCl \longrightarrow CH_3 - CH - CH_3

1.4. Гидратация

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты. **Например,** при взаимодействии этилена с водой образуется

этиловый спирт.
$$CH_2 = CH_2 + H_2O \xrightarrow{H^+} CH_3 - CH_2 - OH$$

Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2.

$$CH_2 = CH - CH_3 + H_2O \xrightarrow{H^+} CH_3 - CH - CH_3$$
OH

1.5. Полимеризация

Полимеризация — это процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

Например, при полимеризации этилена образуется полиэтилен, а при полимеризации пропилена — полипропилен.

$$nCH_2 = CH_2 \xrightarrow{kat} (-CH_2 - CH_2 -)_n$$

$$nCH_3 - CH = CH_2 \xrightarrow{kat} (-CH_2 - CH_2 -)_n$$

$$CH_3 - CH = CH_2 \xrightarrow{kat} (-CH_2 - CH_2 -)_n$$

2. Горение алкенов

Алкены, как и прочие углеводороды, горят в присутствии кислорода с образованием углекислого газа и воды.

Например, уравнение сгорания пропилена:

$$2C_3H_6 + 9O_2 \rightarrow 6CO_2 + 6H_2O$$

Получение алкенов

1. Дегидрирование алканов

При дегидрировании алканов образуются двойные и тройные связи.

Например, при дегидрировании этана может образоваться этилен или ацетилен:

$$CH_3$$
— CH_3 — CH_2 — CH_2 — CH_2 + H_2
 CH_3 — CH_3

2. Крекинг алканов

Термический крекинг протекает при сильном нагревании без доступа воздуха. При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Например, при крекинге н-пентана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды.

3. Дегидрогалогенирование галогеналканов

Галогеналканы взаимодействуют **с щелочами** в спиртовом растворе. При этом происходит дегидрогалогенирование — отщепление (элиминирование) атомов водорода и галогена от галогеналкана.

Например, при взаимодействии хлорэтана с спиртовым раствором гидроксида натрия образуется этилен.

$$C2H5C1+NaOH(спирт.) \rightarrow C2H4 +NaC1+H2O$$

При отщеплении галогена и водорода от некоторых галогеналканов могут образоваться различные органические продукты. В таком случае выполняется правило Зайцева.

Правило Зайцева: отщепление атома водорода при дегидрогалогенировании и дегидратации происходит преимущественно от **наименее гидрогенизированного** атома углерода.

Например, при взаимодействии 2-хлорбутана со спиртовым раствором гидроксида натрия преимущественно образуется бутен-2.

$$CH_3$$
— CH_2 — $CHCl$ — CH_3 + KOH CH_5OH CH_3 — CH — CH — CH_3 + KCl + H_2O

4. Дегидратация спиртов

При нагревании спиртов (выше 140°С) в присутствии водоотнимающих веществ (концентрированная серная кислота, фосфорная кислота) или катализаторов (оксид алюминия) протекает дегидратация. Дегидратация — это отщепление молекул воды. При дегидратации спиртов образуются алкены.

Например, при дегидратации этанола при высокой температуре образуется этилен.

5. Дегалогенирование дигалогеналканов

Дигалогеналканы, в молекулах которых два атома галогена расположены у соседних атомов углерода, реагируют с активными металлами с образованием алкенов. Как правило, для отщепления используют двухвалентные активные металлы — цинк или магний.

Например, 1,2-дихлорпропан реагирует с цинком с образованием пропилена

$$CH_3$$
— CH — CH_2 + Zn — CH_3 — CH — CH_2 + $ZnCl_2$